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The original Van der Pol equation [1] is
X+eV(x)x+x=0, (1)
where
Vix)=x>—1. (2)

Piecewise smooth systems occur in a wide variety of applications, including those involving
friction, backlash and saturation [2], as well as in electrical systems [3]. As part of a much wider
study of these systems (see for example Ref. [4]), V(x) is replaced with a term of the form

Vix)=|x]—1
=sgn(x)x — 1. (3)

The form of V(x) in Eq. (3) is chosen such that its lower bound is —1 and it vanishes at x = +1,
just as in Eq. (2). The behaviour of the system will be investigated for small ¢ and for large ¢. Note
that this equation is mentioned in both Refs. [5, p. 150] and [6, p. 134], but an analysis of its
solution does not seem to have appeared in print to date.

It will be first demonstrated that a limit cycle exists for Eq. (1), with V(x) given by Eq. (3).
Theorem 11.4 of Ref. [5] states that the equation X + ¢f (x)Xx + g(x) = 0 has a unique periodic
solution if f and ¢ are continuous, if F(x) = fg f(u)du is an odd function, if F(x) is zero only at
x=0, x=c¢, x=—c¢, for some ¢>0 and if F(x)— o0 as x— oo monotonically for x>c¢. In
addition, g(x) must be an odd function, and g(x) > 0 for x > 0. Here

(x;—x>, x>0,
F(x) =

2
(—% —x>, x<0
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and g(x) = x. Hence, the conditions of the theorem are satisfied, with ¢ = 2, and so a limit cycle
exists.

When ¢ is small, it is assumed that the period of oscillation is 27 and take the solution to be of
the form x(#) = a cos . There will be no change in the energy of the system over the course of a
limit cycle, and so

2n
h(x,x)xdt =0, (5)
0
where
. (x - 1)x> x> 05
h(x, X) = . (6)
(—x—Dx, x<0.
Hence,

/2 3n/2

/2 3n/2 2n
—a{/ (x — I)XSintdt—i-/ (—x — Dxsinzdr + (x — I)XSintdt} =0. (7)
0 T

Using the substitution p = sin ¢ one finds that

1 -1 0 2n
/ apzdp—i-/ —apzdp+/ apzdp—/ sin® tdt = 0 (8)
0 1 -1 0
and so
3n
a= )

It is straightfoward to show that this limit cycle is stable for ¢ > 0 and unstable for e<0 and that
its frequency o is given by o = 1 + O(¢?). (Note that when V(x) = x> — 1, one has ¢ = 2 [1] and
that when V(x) = |x| — 1, a = 3n/8 [5, p. 144].)

One can show how the system evolves to this limit cycle, using the method of multiple scales.
Write

sgn(x) = %; (25;)_ D cos (2n + 1)t, (10)

and set T = ¢ to represent the fast time scale of oscillations, and T = & to represent the slow
amplitude drift. Hence,

ox ox
‘= —+e— 11
Y=t (1
and
0*x 0% x 0% x
f=—42 2 12
Y=t ¥t T o (12)
Writing
ox B ox 0*x 0%x 0%x

ﬁ = X7, ﬁ = Xz1, W = X717, ol = Xz17T,
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setting
x(t) = xo(t, T) + exi (7, T) + O(&?), (13)
substituting Eqgs. (11)—(13) into Eq. (1) and using Eq. (3), to leading order,
Xorr + X0 =0 (14)
and at first order,
Xize + X1 = Xo:(1 — sgn(x)x0) — 2x0:7- (15)
The solution to Eq. (14) is
= A(T)e" + A" (T)e ™ (16)
and so, using Egs. (10) and (16), Eq. (15) becomes

X1ze + X1
. 1 . * 3
=(14e" —id e™)

i * i 2 ; o
% (1 _(Aelr +4 e*lr) <Z (2]+ I)A 1(2j+1)t+el(2j+1)1]>)

— 2idre™ +2id e (17)
which can be rewritten as

X1 + X1
= — 2idre” + 21A*Te*if +ide® —id’e ™

— —{ ( ( 1)142 1(2]+3)‘E e1(1 2])1' ) ( ( ( 1|A| |: 1(2] 1)1 e 1(2] 1)’[])
2’.] +
Jj=

il4 1(2j+1)r+efi(2j+l)r 1(2] 1)T+efl(2]+3)‘[ ) 18
<2(2]+1)' L (S D a9

Jj=0

8

The required secularity condition is

2 A"
2A7 = A — —<A2+—>. (19)
i 3
Note that the substitution sgn(x) = —cost leads to the omission of the final term in Eq. (19). In
fact it is necessary to keep terms up to and including j = 1 at this order.
Setting

A =la(T)e"D (20)
and substituting this into Eq. (19), it is straightforward to show that 0(T) is identically zero and
that

da 4a?
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The solution to Eq. (21) is
3713&0
[4ap — (4ap — 3m)e=1/DT]’

a(T) = (22)
where ay is the initial value of a. Hence, a(f)—37n/4 as t— oo, in agreement with Eq. (9). It has
been shown that the limit cycle of a piecewise smooth version of the Van der Pol equation can be
solved for small e. The Fourier series expansion of sgn(x) is required, but only two terms are
needed to successfully analyze the system to first order.

For large ¢, take ¢ = &', set 6 = 1/¢? and drop the primes. Then Eq, (1) becomes

oxX+ V(x)x+x=0. (23)
Using the Lienard transformation [5] gives
V==X,
ox=y— F(x), (24)

where F(x) is given by Eq. (4). Hence, for large ¢ (that is, small §), one can see that y— F(x). The
time taken to complete a limit cycle in this limit is given by

- jc[ ar— [ (25)
Y

As with the Van der Pol equation, the response in this limit is made up of a fast phase (which is
taken to be negligible) and a slow phase. The function F(x) has extreme values of + at x = F1,
respectively. The slow phase begins at (x, F(x)) = (1 + \/— ») and ends at the mlmmum of F(x)
given by (x, F(x)) = (1, — ) The slow phase starts again at (x, F(x)) = (—1 — f — —) and ends
again at the maximum of F(x) given by (x, F(x)) = (—1,%). Hence, Eq. (25) becomes

S = 2/F_(’;)
! 1
=2 “1+-)d
/1+\/§< +x> *

A 1
=2 x—l—lnx]H\/E

—2[v2-In (1+2)]. (26)
The period of oscillation of the limit cycle of Eq. (1) and (3) for large ¢ is therefore given by
<2 {\/5 — In(1 4+ \/E)] >z—: ~ 1.07¢, with the discontinuity in the gradient of V(x) having no effect on

the result at this order because it is contained in the fast phase of the response. (Note that for the
Van der Pol equation [5], the period of oscillation for large ¢ is (3 —In4)e~1.61¢.)
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