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The original Van der Pol equation [1] is

.x þ eV ðxÞ ’x þ x ¼ 0; ð1Þ

where

V ðxÞ ¼ x2 � 1: ð2Þ

Piecewise smooth systems occur in a wide variety of applications, including those involving
friction, backlash and saturation [2], as well as in electrical systems [3]. As part of a much wider
study of these systems (see for example Ref. [4]), V ðxÞ is replaced with a term of the form

VðxÞ ¼ jxj � 1

¼ sgnðxÞx � 1: ð3Þ

The form of V ðxÞ in Eq. (3) is chosen such that its lower bound is �1 and it vanishes at x ¼ 71;
just as in Eq. (2). The behaviour of the system will be investigated for small e and for large e: Note
that this equation is mentioned in both Refs. [5, p. 150] and [6, p. 134], but an analysis of its
solution does not seem to have appeared in print to date.

It will be first demonstrated that a limit cycle exists for Eq. (1), with V ðxÞ given by Eq. (3).
Theorem 11.4 of Ref. [5] states that the equation .x þ ef ðxÞ ’x þ gðxÞ ¼ 0 has a unique periodic
solution if f and g are continuous, if F ðxÞ �

R x

0 f ðuÞ du is an odd function, if FðxÞ is zero only at
x ¼ 0; x ¼ c; x ¼ �c; for some c > 0 and if FðxÞ-N as x-N monotonically for x > c: In
addition, gðxÞ must be an odd function, and gðxÞ > 0 for x > 0: Here

FðxÞ ¼

x2

2
� x

� �
; x > 0;

�
x2

2
� x

� �
; xo0

8>>><
>>>:

ð4Þ
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and gðxÞ ¼ x: Hence, the conditions of the theorem are satisfied, with c ¼ 2; and so a limit cycle
exists.

When e is small, it is assumed that the period of oscillation is 2p and take the solution to be of
the form xðtÞ ¼ a cos t: There will be no change in the energy of the system over the course of a
limit cycle, and so Z 2p

0

hðx; ’xÞ ’x dt ¼ 0; ð5Þ

where

hðx; ’xÞ ¼
ðx � 1Þ ’x; x > 0;

ð�x � 1Þ ’x; xo0:

(
ð6Þ

Hence,

�a

Z p=2

0

ðx � 1Þ ’x sin t dt þ
Z 3p=2

p=2
ð�x � 1Þ ’x sin t dt þ

Z 2p

3p=2
ðx � 1Þ ’x sin t dt

( )
¼ 0: ð7Þ

Using the substitution r ¼ sin t one finds thatZ 1

0

ar2 drþ
Z �1

1

�ar2 drþ
Z 0

�1

ar2 dr�
Z 2p

0

sin2 t dt ¼ 0 ð8Þ

and so

a ¼
3p
4
: ð9Þ

It is straightfoward to show that this limit cycle is stable for e > 0 and unstable for eo0 and that
its frequency o is given by o ¼ 1þ Oðe2Þ: (Note that when VðxÞ ¼ x2 � 1; one has a ¼ 2 [1] and
that when V ðxÞ ¼ j ’xj � 1; a ¼ 3p=8 [5, p. 144].)

One can show how the system evolves to this limit cycle, using the method of multiple scales.
Write

sgnðxÞ ¼
4

p

XN
n¼0

ð�Þn

ð2n þ 1Þ
cos ð2n þ 1Þt; ð10Þ

and set t ¼ t to represent the fast time scale of oscillations, and T ¼ et to represent the slow
amplitude drift. Hence,

’x ¼
@x

@t
þ e

@x

@T
ð11Þ

and

.x ¼
@2x

@t2
þ 2e

@2x

@t @T
þ e2

@2x

@T2
: ð12Þ

Writing

@x

@t
¼ xt;

@x

@T
¼ xT ;

@2x

@t2
¼ xtt;

@2x

@T2
¼ xTT ;

@2x

@t @T
¼ xtT ;
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setting

xðtÞ ¼ x0ðt;TÞ þ ex1ðt;TÞ þ Oðe2Þ; ð13Þ

substituting Eqs. (11)–(13) into Eq. (1) and using Eq. (3), to leading order,

x0tt þ x0 ¼ 0 ð14Þ

and at first order,

x1tt þ x1 ¼ x0tð1� sgnðxÞx0Þ � 2x0tT : ð15Þ

The solution to Eq. (14) is

x0 ¼ AðTÞ eit þ A�ðTÞ e�it ð16Þ

and so, using Eqs. (10) and (16), Eq. (15) becomes

x1tt þ x1

¼ðiAeit � iA�e�itÞ

	 1� ðAeit þ A�e�itÞ
2

p

XN
j¼0

ð�Þj

ð2j þ 1Þ
A ei 2jþ1ð Þt þ e�i 2jþ1ð Þt�  ! !

� 2iATe
it þ 2iA�

Te
�it ð17Þ

which can be rewritten as

x1tt þ x1

¼ � 2iATe
it þ 2iA�

Te
�it þ iAeit � iA�e�it

�
2

p

XN
j¼0

ð�Þj

ð2j þ 1Þ
iA2 eið2jþ3Þt þ eið1�2jÞt�  !

þ
XN
j¼0

ð�Þj

ð2j þ 1Þ
ijAj2 eið2jþ1Þt þ e�ið2jþ1Þt�  !(

�
XN
j¼0

ð�Þj

ð2j þ 1Þ
ijAj2 eið2jþ1Þt þ e�ið2jþ1Þt�  !

�
XN
j¼0

ð�Þj

ð2j þ 1Þ
iA�2 eið2j�1Þt þ e�ið2jþ3Þt�  !)

: ð18Þ

The required secularity condition is

2AT ¼ A �
2

p
A2 þ

A�2

3

� �
: ð19Þ

Note that the substitution sgnðxÞ ¼ 4
p cos t leads to the omission of the final term in Eq. (19). In

fact it is necessary to keep terms up to and including j ¼ 1 at this order.
Setting

A ¼ 1
2
aðTÞeiyðTÞ ð20Þ

and substituting this into Eq. (19), it is straightforward to show that yðTÞ is identically zero and
that

2
da

dT
¼ a �

4a2

3p
: ð21Þ
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The solution to Eq. (21) is

aðTÞ ¼
3pa0

4a0 � 4a0 � 3pð Þe�ð1=2ÞT
� ; ð22Þ

where a0 is the initial value of a. Hence, aðtÞ-3p=4 as t-N; in agreement with Eq. (9). It has
been shown that the limit cycle of a piecewise smooth version of the Van der Pol equation can be
solved for small e: The Fourier series expansion of sgnðxÞ is required, but only two terms are
needed to successfully analyze the system to first order.

For large e; take t ¼ et0; set d ¼ 1=e2 and drop the primes. Then Eq, (1) becomes

d .x þ V ðxÞ ’x þ x ¼ 0: ð23Þ

Using the Lienard transformation [5] gives

’y ¼ � x;

d ’x ¼ y � F ðxÞ; ð24Þ

where F ðxÞ is given by Eq. (4). Hence, for large e (that is, small d), one can see that y-F ðxÞ: The
time taken to complete a limit cycle in this limit is given by

S ¼
I

dt ¼
Z

dy

’y
: ð25Þ

As with the Van der Pol equation, the response in this limit is made up of a fast phase (which is
taken to be negligible) and a slow phase. The function FðxÞ has extreme values of 71

2
at x ¼ 81;

respectively. The slow phase begins at ðx;F ðxÞÞ ¼ ð1þ
ffiffiffiffi
2;

p
1
2
Þ and ends at the minimum of F ðxÞ

given by ðx;F ðxÞÞ ¼ ð1;�1
2
Þ: The slow phase starts again at ðx;FðxÞÞ ¼ ð�1�

ffiffiffiffi
2;

p
� 1

2
Þ and ends

again at the maximum of F ðxÞ given by ðx;F ðxÞÞ ¼ ð�1; 1
2
Þ: Hence, Eq. (25) becomes

S ¼ 2

Z
F ðxÞ
�x

dx

¼ 2

Z 1

1þ
ffiffi
2

p �1þ
1

x

� �
dx

¼ 2 �x þ ln x½ �1
1þ

ffiffi
2

p
¼ 2

ffiffiffi
2

p
� ln 1þ

ffiffiffi
2

p� �h i
: ð26Þ

The period of oscillation of the limit cycle of Eq. (1) and (3) for large e is therefore given by

2
ffiffiffi
2

p
� lnð1þ

ffiffiffi
2

p
Þ

h i� �
eC1:07e; with the discontinuity in the gradient of V ðxÞ having no effect on

the result at this order because it is contained in the fast phase of the response. (Note that for the
Van der Pol equation [5], the period of oscillation for large e is ð3� ln 4ÞeC1:61e:)
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